品牌:艾珀耐特
起订:100米
供应:88888米
发货:8天内
今日行情:湛江艾珀耐特易熔型采光瓦经销商

详述了反气相色谱用于水泥颗粒表面性质测试的热力学理论和仪器原理,并以此测试了水泥颗粒的表面性质.结果表明:极性和非极性探针分子均与水泥颗粒表面发生相互作用,随着分子表面覆盖率的增加,水泥颗粒的色散表面能、极性表面能和总表面能均显著降低,但降低幅度趋于缓和;极性探针分子附于水泥颗粒表面的驱动力本质上是酸碱作用力,水泥颗粒表面总体表现为碱性;水泥颗粒总表面能的分布近似于抛物线或正态分布,呈非均质特性.
FRP采光板:可以根据需要定制完全匹配的板型,因此安装配件少,并且可做暗扣、
直立锁边咬合屋面。 安装方便、快捷、成本低、防水性好。
PC阳光板:大多是平板,为了与金属板搭接,需要做其它的辅助结构,而屋面金属板都为波浪型,导致接点很难处理,施工时成本高,费时、费力。又由于热膨胀系数高,施工时需要计算膨胀预留(热胀冷缩值),所以非常容易造成漏水。
抗拉力性
FPR采光板:拉力强度为94MPa,能承受与金属板板相近的较高荷载,抗风能力强。
PC阳光板:拉力强度为60MPa,承受荷载的能力弱,与金属板承受荷载的能力
相差较大,抗台风能力弱。
隔热性
今日行情:湛江艾珀耐特易熔型采光瓦经销商

近年来,由于纤维复合增强材料(FRP)加固结构的需要,越来越多的人开始对FRP
FRP采光板:热传导率为0.158w/m.k,
PC聚碳酸脂板:热传导率为0.166w/m.k,FRP的隔热性能优于PC板。
抗撕裂性及拉伸强度
FRP采光板:采用上下膜与玻璃纤维、树脂加强的结构形式,使其抗撕裂性及拉伸
强度好。
PC聚碳酸脂板:为纯树脂结构形式,其分子结构的特殊性致使其抗撕裂性及拉伸强
度差,容易被金属毛裂而漏水,螺钉孔周缘也容易被撕裂。
隔热保温性
FRP采光板:可做双层板,上层和下层板中间距离大,中间以空气作为隔热层,能有
效保温。
PC阳光板:本身为双层,上层和下层板距离小,保温性差。
使用寿命(抗紫外线性)
FRP采光板:表面贴覆标称20微米之美杜邦公司Melinex R74抗紫外线薄膜,能99%以上的隔绝紫外线,并抵抗其腐蚀物,保护基材不受破坏,使采光板的使用寿命至少可达15年,实际能达20年以上。生产厂家提供15年以上质量保证。
PC阳光板:采用在树脂中加入抗紫外线添加剂的方式来抵抗紫外线,但同时又使得原
材料的纯度降低影响板材性能,使得抗紫外线性能不能长久有效,易老化、变黄、变
脆。阳光板的使用寿命约为5-10年,生产厂家提供10年以下质量保证。
今日行情:湛江艾珀耐特易熔型采光瓦经销商

通过机理分析及试验验证,提出了一种能提高再生骨料混凝土性能的预拌浓浆法,并分别采用该方法和传统拌制工艺,对比研究了再生骨料混凝土28d抗压强度的统计分布规律.结果表明:与传统拌制工艺相比,预拌浓浆法能使再生骨料混凝土28d抗压强度提高8%~19%;同时,预拌浓浆法能够在不改变配合比的条件下,使再生骨料混凝土抗冻性明显改善.
综上所述:
FRP采光板:防水性好、耐用性好、自洁性好、抗撕裂性好、经济性好。
PC聚碳酸脂板:防水性差、耐用性一般、自洁性差、抗撕裂性差、经济性一般。
今日行情:湛江艾珀耐特易熔型采光瓦经销商

通过锈蚀高强钢筋反复荷载试验,分析了锈蚀对高强钢筋力学性能和耗能性能的影响.同时探究了锈蚀引起高强钢筋力学性能及耗能性能退化的原因,并建立了锈蚀高强钢筋力学性能及耗能性能退化模型.结果表明:高强钢筋随着锈蚀程度的增加,其力学性能不断降低,屈服平台逐渐消失,延性下降,破坏时更加表现为脆性断裂;反复荷载下,高强钢筋随着锈蚀程度的加深,滞回环逐渐缩小,耗能性能降低,使得结构抗震性能下降,地震发生时更易导致结构脆性破坏.