行业分类
榆林LED显示屏
日期:2010-09-25 01:03  点击:6
价格:未填
供应:99999
发货:3天内
LED封装的工艺过程  LED封装的任务是将外引线连接到LED芯片的电极上,同时保护好LED芯片,并且起到提高光取出效率的作用。而LED的封装形式是五花八门,主要根据不同的应用场合采用相应的外形尺寸。而支架式全环氧包封是目前用量最大、产量最高的形式,因此也应该是LED封装产品质量在线检测的重点突破对象。  支架式全环氧包封的主要工序是[4],首先对LED芯片进行镜检、扩片,并在一组连筋的支架排中每个LED支架的反光碗中心处以及芯片的背电极处点上银胶(即点胶、备胶工艺),然后用真空吸嘴将LED芯片吸起安置在支架的反光碗中心处,并通过烧结将芯片的背电极与支架固结在一起(即固晶工艺);通过压焊将电极引线引到LED芯片上,完成产品内外引线的连接工作(即压焊工艺);将光学环氧胶真空除泡后灌注入LED成型模内、然后将支架整体压入LED成型模内(即灌胶工艺),对环氧胶进行高温固化、退火降温,固化之后脱模(即固化工艺),最后切断LED支架的连筋(图1所示),最后进行分检、包装。  2.2 LED封装工艺的特点分析  从LED的封装工艺过程看,在芯片的扩片、备胶、点晶环节,有可能对芯片造成损伤,对LED的所有光、电特性产生影响;而在支架的固晶、压焊过程中,则有可能产生芯片错位、内电极接触不良,或者外电极引线虚焊或焊接应力,芯片错位影响输出光场的分布及效率,而内外电极的接触不良或虚焊则会增大LED的接触电阻;在灌胶、环氧固化工艺中,则可能产生气泡、热应力,对LED的输出光效产生影响。  因此可知,LED芯片与封装工艺皆会对其光、电特性产生影响,因此LED的最终质量是各个工艺环节的综合反映。要提高其封装产品质量,需要对各个生产工艺环节进行实时检测、调整工艺参数,以将次品、废品控制在最低限度。由于封装工艺过程的精细、复杂、高速特性,常规的接触式测量几乎难以实现封装中的质量检测,非接触测量是最有希望的手段。3、非接触检测的基本原理  3.1 LED芯片的光伏特性  发光二极管LED芯片的核心是掺杂的PN结,当给它施加正向工作电压VD时,驱使价带中的空穴穿过PN结进入N型区、同时驱动导带中的电子越过PN结进入P型区,在结的附近多余的载流子会发生复合,在复合过程中发光、从而把电能转换为光能。其在电流驱动条件下发光的性质是由PN的掺杂特性决定,而光电二极管PD的光电特性的也是由PN的掺杂特性决定的,因此LED与PD在本质上有相近之处,这样当光束照射到开路的LED芯片上时,会在LED芯片的PN结两端分别产生光生载流子电子、空穴的堆积,形成光生电压VL。若将此LED芯片的外电路短路,则其PN结两端的光生载流子会定向流动形成光生电流IL:[4][5]   式中:A为芯片的PN结面积,q是电子电量,w是PN结的势垒区宽度,Ln、Lp 分别为电子、空穴的扩散长度, 是量子产额(即每吸收一个光子产生的电子-空穴对数), P是照射到PN结上的平均光强度(即单位时间内单位面积被半导体材料吸收的光子数)。它们分别为:  其中, n、 p分别为电子、空穴迁移率(与材料本身、掺杂浓度以及温度有关),KB为玻尔兹曼常数,T为开氏温度, n、 p分别为电子、空穴载流子寿命(与材料本身及温度有关), 为半导体PN结材料本身、掺杂浓度以及激励光的波长有关的材料吸收系数,d是PN结的厚度,P(x)是在PN结内位置x处的激励光强度。  考察式(1)~(3)可知,LED芯片的光伏特性与其PN结的结构参数、材料参数相关,而这些参数正好是决定LED发光特性的关键参数,因此如果一只LED芯片的发光特性好、则其光伏特性也好,反之亦然。因此可以利用LED芯片发光特性与光伏特性之间的这种内在联系,通过测试其光伏特性来间接检验其发光特性,判断LED芯片质量的优劣,实现其封装质量的非接触检测。  3.2 LED光伏特性的等效电路  对于支架式封装的LED而言,在封装过程中是将一组连筋的支架装夹在封装机上,然后将芯片与支架封装在一起,构成图1所示的支架封装结构。由图1(b)、(c)可以看出,LED的支架、支架连筋、引线、银胶与LED芯片一起,构成了一个完整的外电路短接通道,正符合光伏效应的工作要求。而对于LED封装质量的常规检测方法而言,这种工作条件是完全无法开展检测的。  由于实际的LED并不是一个单纯的理想PN结,它不仅包含PN结的内阻、并联电阻及串联电阻,还包含支架、支架连筋、引线、银胶,因此PN结在外界光照下产生的光生伏特效应形成的光生电流IL并不完全等于流过支架的光生电流IL1。因此支架上流过的电流是LED光电参数的综合反映。  若将引线支架的内阻RL看作是光照时LED的负载、PN结光生伏特效应产生的光生电流IL看作为一个恒流源,则光照时LED的等效电路如图2所示。即工作于光生伏特效应下的LED由可等效为一个理想电流源IL、一个理想二极管D、以及相应的等效串、并联电阻Rsh、Rs。其中等效并联电阻Rsh包括PN结内的漏电阻以及结边缘的漏电阻,而等效串联电阻Rs包括P区和N区的体电阻Rs1、电极的电阻以及电极和结之间的接触电阻Rs2,且   而IL1是引线支架上流过的负载电流,IF是流过理想二极管D的正向电流,它与二极管两端的电压VD满足关系式:   式中Is是二极管的反向饱和电流, 是与PN结电流复合机制有关的一个参数,它们都是由LED芯片的特性决定。因此IF反映了LED的芯片特性。 根据图2所示的等效电路,可以得到光生电流IL与支架上流过的电流IL1的关系为:   由式(7)可以看出,对于LED封装产品而言,外线路上的电流IL1由两部分组成,其中分子部分主要反映芯片的内在质量,而分母则主要反映芯片外部的器件质量(如封装过程中存在的固晶胶连、引线焊接质量等诸多缺陷)。因此只要检测连筋上的光电流,既可全面掌握LED芯片/器件的封装质量。@@@@@@@@@@4、LED封装质量非接触在线检测的弱信号检测技术 4.1 系统实现原理  考察图1(b)、(c)及式(7)可知,在LED压焊之后、灌胶之前,就已经形成了LED光伏效应必须的短接电路,因此可以在压焊后、灌胶前,利用LED的光伏效应对芯片质量、固晶质量、压焊质量进行检测,及时挑出次品进行人工修补,并根据检测结果对LED封装生产线的相应工艺参数进行实时修正,进一步控制次品率。而在环氧封装完成后、切筋前的环节,则还可以再次利用LED的光伏效应对封装的效果进行非接触检测,指导对环氧灌胶、固化工艺的实时调整,剔除次品/废品。  根据图1及式(7)可知,利用LED的光伏效应进行芯片/封装的非接触检测,其关键有三,一是用特定光束准确地照射到LED芯片上,非接触地提供光伏效应所需的光激励;二是用特殊的技术手段不,非接触地获取支架回路中的光生电流;三是根据获取的光生电流,对芯片的质量缺陷进行判断。为此采用图3所示原理系统,实现LED的非接触检测[5][6]。  其中半导体激光器LD发出的光经聚焦后投射到LED芯片上,以对LED激发使其产生光伏效应。而在信号的采集环节,采用电磁耦合方式获取LED在光照下输出的电流信号,以实现非接触测量。最后采用采用式(7)对光电流进行计算处理,对LED的质量进行判别,并找出影响封装质量的原因,区分出芯片、封装的因素。  虽然在光照下LED会产生光伏效应,但其光伏效应远远弱于作为光电探测器的光电二极管PD,因此其光生电流IL极为微弱,只有微安数量级,因此非接触地获取支架回路中的光生电流,是其中技术难度最大的一个关键。虽然采用电磁耦合方式可实现LED光生电流的非接触测量,但是电磁耦合的方式同时也会耦合进了空间电磁场,这些外界电磁场噪声与干扰远远比光生电流IL强,因此从强烈的外界电磁场信号中提取出十分微弱的光生电流IL非常困难。为此采用抗混滤波、锁相放大的组合方式,实现了从强烈的环境噪声中分离光生电流IL的目的。
联系方式
公司:陕西振远光电科技有限公司
发信:点此发送
姓名:陈林杰(先生)
电话:86-029-33197105
手机:18992020207
传真:86-029-33197107
地址:中国 陕西 咸阳市秦都区 陕西咸阳世纪大道清华科技园北区
关于网站  |  普通版  |  触屏版  |  网页版
01/08 15:37
首页 刷新 顶部